Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells

Author:

Zhao Ze-Yu ,Liu Jin-Qiao ,Li Ai-Wu ,Niu Li-Gang ,Xu Ying , , ,

Abstract

Organic solar cells based on small molecules and conjugated polymers are attracting much attention due to their merits of low costs, simple fabrication processes, light weights, and mechanical flexibilities. Metals are usually considered as promising candidates for the semi-transparent electrodes. In such devices, a strong microcavity resonance can be supported between the two electrodes, resulting in a narrowed bandwidth of light absorption, which, unfortunately, will lower the performances of organic solar cells since broadband absorption is always highly desired. To overcome this obstacle, people have proposed many designs such as using ultra-thin electrodes or using dielectric-metal hybrid electrodes. Although the light absorption bandwidth can be improved considerably, the absorption efficiency would be lowered due to the weakened microcavity resonance. This is a tough problem that always bothers both researchers and engineers. To solve this problem, we propose a light trapping scheme based on broadband hybrid modes due to the hybridization between microcavity resonance and antireflection resonance. By introducing a capping layer outside the device structure, antireflection resonance can be excited inside the capping layer and can then couple with the intrinsic microcavity resonance, inducing dual microcavity-antireflection resonance hybrid modes. The hybrid modes are of broadband and their resonant wavelengths can be easily designed by tuning the capping layer thickness and cavity length, since the capping layer thickness would affect the antireflection resonance while the cavity length would affect the microcavity resonance. By matching the resonance with the high absorption region of the active layer, the overall absorptivity of the proposed device can be greatly enhanced by~37% compared to the conventional microcavity based device where only one mode, that is, the microcavity resonance can be supported. Moreover, we compare our light trapping scheme with the surface plasmon-polaritons based scheme where surface waves are excited to help improve the light absorption. We find that the overall absorptivity of the proposed device cannot be further improved when we introduce grating structure into the device in order to excite surface plasmon-polaritons. This is mainly because the light absorption based on our hybrid mode scheme is already thorough so that the introduction of grating structure can only improve the light loss dissipated in the metal electrodes due to scatterings and diffractions by the gratings. Therefore, the proposed hybrid mode based scheme can be considered as a simple and effective light trapping scheme for organic solar cells and may find applications in both polymer and small molecular based organic solar cells.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3