Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells

Author:

Li Qing ,Li Hai-Qiang ,Zhao Juan ,Huang Jiang ,Yu Jun-Sheng ,

Abstract

Organic solar cell (OSC) with an inverted structure based on subphthalocyanine (SubPc)/C60 is fabricated by using Cs2CO3, graphene:Cs2CO3 mixed system and ZnO nanoparticles as cathode modifying materials, and its influences on the performance and stability of OSC are investigated. The results show that the OSC with an appropriate thickness of cathode modifying layer exhibits higher performance and it is more stable than those unmodified ones. The power conversion efficiency (PCE) of the Cs2CO3 and graphene:Cs2CO3 mixed material modified device is enhanced by a factor of two. Meanwhile, the ZnO nanoparticle modified device shows a highest open-circuit voltage (VOC) of 0.89 V, and the PCE increases more than 4 times. Besides, the adoptions of different cathode modifying materials and the inverted structures can effectively prevent the series resistance of the device from increasing, thereby improving the stability of the device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3