Effects of organic molecule adsorption and substrate on electronic structure of germanene

Author:

Xiao Mei-Xia,Leng Hao,Song Hai-Yang,Wang Lei,Yao Ting-Zhen,He Cheng, ,

Abstract

The development potential of germanene-based integrated electronics originates from its high carrier mobility and compatibility with the existing silicon-based and germanium-based semiconductor industry. However, the small band gap energy band (Dirac point) of germanene greatly impedes its application. Thus, it is necessary to open a sizeable band gap without reducing the carrier mobility for the application in logic circuits. In this study, the effects of organic molecule (benzene or hexafluorobenzene) adsorption and substrate on the atomic structures and electronic properties of germanene under an external electric field are investigated by using density functional theory calculations with van der Waals correction. For benzene/germanene and hexafluorobenzene/germanene systems, four different adsorption sites are considered, with the center of the organic molecules lying directly atop the upper or lower Ge atoms of germanene, in the Ge-Ge bridge center, and on the central hollow ring. Meanwhile, different molecular orientations at each adsorption site are also considered. Thus, there are eight high-symmetry adsorption configurations of the systems, respectively. According to the adsorption energy, we can determine the most stable atomic structures of the above systems. The results show that the organic molecule adsorption can induce the larger buckling height in germanene. Both the adsorption energy and interlayer distance indicate that there is no chemical bond between the organic molecules and germanene. Mulliken population analysis shows that a charge redistribution in the two sublattices in germanene exists since benzene is an electron donor molecule and hexafluorobenzene is an electron acceptor molecule. As a result, the benzene/germanene system exhibits a relatively large band gap (0.036 eV), while hexafluorobenzene/germanene system displays a small band gap (0.005 eV). Under external electric field, germanene with organic molecule adsorption can exhibit a wide range of linear tunable band gaps, which is merely determined by the strength of electric field regardless of its direction. The charge transfer among organic molecules and two sublattices in germanene gradually rises with the increasing the strength of electric field, resulting in the electron density around the sublattices in germanene unequally distributed. Thus, according to the tight-binding model, a larger band gap at the <i>K</i>-point is opened. When germanane (fully hydrogenated germanene HGeH) substrate is applied, the band gaps further widen, where the band gap of benzene/ germanene/germanane system can increase to 0.152 eV, and that of hexafluorobenzene/germanene/germanane system can reach 0.105 eV. The sizable band gap in germanene is created due to the symmetry of two sublattices in germanene destroyed by the dual effects of organic molecule adsorption and substrate. Note that both of organic molecules and substrate are found to non-covalently functionalize the germanene. As the strength of the negative electric field increases, the band gaps can be further modulated effectively. Surprisingly, the band gaps of the above systems can be closed, and reopened under a critical electric field. These features are attributed to the build-in electric field due to the interlayer charge transfer of the systems, which breaks the equivalence between the two sublattices of germanene. More importantly, the high carrier mobility in germanene is still retained to a large extent. These results provide effective and reversible routes to engineering the band gap of germanene for the applications of germanene to field-effect transistor and other nanoelectronic devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3