Optical properties of two-dimensional black phosphorus

Author:

Huang Shen-Yang,Zhang Guo-Wei,Wang Fan-Jie,Lei Yu-Chen,Yan Hu-Gen, ,

Abstract

Recently, black phosphorus (BP), an emerging layered two-dimensional (2D) material, has aroused much research interest. Distinguished from most of other 2D materials, BP is always a direct bandgap semiconductor regardless of the thickness, with the bandgap ranging from 0.3 eV (bulk) to 1.7 eV (monolayer), which is just fill the gap in the bandgap between graphene and transition metal dichalcogenides (TMDCs) in this frequency range. Besides, the BP exhibits many intriguing properties, such as high carrier mobility, highly tunable and anisotropic physical properties, which render the BP another star 2D material following graphene and TMDCs. In this review, we mainly focus on the advances in the optical properties of 2D BP, with the content covering the intrinsic optical properties and external perturbation effects on optical properties. Regarding the intrinsic optical properties, we introduce the anisotropic and layer-dependent optical absorption from interband transitions, the layer-dependent exciton binding energy and exciton absorption, visible-to-infrared photoluminescence, and stability of absorption and photoluminescence. As for external perturbation effects on optical properties, we introduce in-plane uniaxial and biaxial strain effects, gate-induced quantum confined Franz-Keldysh effect and Burstein-Moss effect. And finally we give a brief summary and outlook, pointing out some several interesting and important issues of BP, which need further studying urgently such as hyperbolic plasmons, intersubband transitions, optical properties in heterostructures and twist angle moiré superlattice and so on. This review gives an overview of the optical properties of BP and is expected to arouse the interest in further studying the BP.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3