High-sensitive microwave sensor and communication based on Rydberg atoms

Author:

Fan Jia-Bei,Hao Li-Ping,Bai Jing-Xu,Jiao Yue-Chun,Zhao Jian-Ming,Jia Suo-Tang, ,

Abstract

We present a high-sensitivity weak microwave measurement and communication technology by employing the Rydberg beat technique. The Rydberg cascade three-level system is composed of a cesium ground state <inline-formula><tex-math id="M8">\begin{document}$6{\rm{S}}_{1/2}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M8.png"/></alternatives></inline-formula>, an excited state <inline-formula><tex-math id="M9">\begin{document}$6{\rm{P}}_{3/2}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M9.png"/></alternatives></inline-formula>, and a Rydberg state <inline-formula><tex-math id="M10">\begin{document}$n{\rm{D}}_{5/2}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M10.png"/></alternatives></inline-formula> in a room-temperature cesium cell. A two-photon resonant Rydberg electromagnetic induced transparency (EIT) is used to optically detect the Rydberg level, in which a weak probe laser is locked at the resonant transition of <inline-formula><tex-math id="M11">\begin{document}$|6{\rm{S}}_{1/2}\rangle \rightarrow |6{\rm{P}}_{3/2}\rangle$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M11.png"/></alternatives></inline-formula>, and a strong coupling laser drives the transition of <inline-formula><tex-math id="M12">\begin{document}$|6{\rm{P}}_{3/2}\rangle \rightarrow |n{\rm{D}}_{5/2}\rangle$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M12.png"/></alternatives></inline-formula>. Both lasers are locked with a high-precision Fabry-Perot cavity. Two <i>E</i>-fields are incident into the vapor cell to interact with Rydberg atoms via a microwave horn, one is a strong microwave field with frequency 2.19 GHz, acting as a local field (<inline-formula><tex-math id="M13">\begin{document}$E_{{\rm{L}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M13.png"/></alternatives></inline-formula>) and resonantly coupling with two Rydberg energy levels, <inline-formula><tex-math id="M14">\begin{document}$|68{\rm{D}}_{5/2}\rangle$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M14.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$|69{\rm{P}}_{3/2}\rangle$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M15.png"/></alternatives></inline-formula>, and the other is a weak signal field (<inline-formula><tex-math id="M16">\begin{document}$E_{{\rm{S}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M16.png"/></alternatives></inline-formula>) with frequency difference <inline-formula><tex-math id="M17">\begin{document}${\text{δ}} f$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M17.png"/></alternatives></inline-formula>, interacting with the same Rydberg levels. The wave-absorbing material is placed around the vapor cell to reduce the reflection of microwave field. In the presence of the local field, the Rydberg atoms are employed as a microwave mixer for reading out the difference frequency <inline-formula><tex-math id="M18">\begin{document}${\text{δ}}f$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M18.png"/></alternatives></inline-formula> oscillation signal, which is proportional to the amplitude of weak signal field. The minimum detectable field of <inline-formula><tex-math id="M19">\begin{document}$E_{0} = 1.7$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M19.png"/></alternatives></inline-formula> μV/cm is obtained when the lock-in output reaches the base noise. We also measure the frequency resolution of the Rydberg mixer by changing the <inline-formula><tex-math id="M20">\begin{document}${\text{δ}} f$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M20.png"/></alternatives></inline-formula> with fixed <inline-formula><tex-math id="M21">\begin{document}$ f_{\rm ref} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20201401_M21.png"/></alternatives></inline-formula>, thus achieving a frequency resolution better than 1 Hz. For neighboring fields with 1 Hz away from the signal field, an isolation of 60 dB is achieved. Furthermore, we use the Rydberg atom as an antenna to receive the baseband signals encoded into the weak microwave field, demonstrating that the receiver has a transmission bandwidth of about 200 MHz. The demonstration of sensitivity of Rydberg atoms to microwave field is particularly useful in many areas, such as quantum precise measurement and quantum communications. In general, this technique can be extended to the detection of electromagnetic radiation from the radio-frequency regime to the tera-hertz range and is feasible for fabricating a miniaturized devices, thereby providing us with a way to receive the information encoded in tera-hertz carriers in future work.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3