Research progress of green chemical mechanical polishing slurry

Author:

Gao Pei-Li,Zhang Zhen-Yu,Wang Dong,Zhang Le-Zhen,Xu Guang-Hong,Meng Fan-Ning,Xie Wen-Xiang,Bi Sheng, , ,

Abstract

Atomic-scale fabrication is an effective way to realize the ultra-smooth surfaces of semiconductor wafers on an atomic scale. As one of the crucial manufacturing means for atomically precise surface of large-sized functional materials, chemical mechanical polishing (CMP) has become a key technology for ultra-smooth and non-damage surface planarization of advanced materials and devices by virtue of the synergetic effect of chemical corrosion and mechanical grinding. It has been widely used in aviation, aerospace, microelectronics, and many other fields. However, in order to achieve ultra-smooth surface processing at an atomic level, chemical corrosion and mechanical grinding methods commonly used in CMP process require some highly corrosive and toxic hazardous chemicals, which would cause irreversible damage to the ecosystems. Therefore, the recently reported green chemical additives used in high-performance and environmentally friendly CMP slurry for processing atomically precise surface are summarized here in this paper. Moreover, the mechanism of chemical reagents to the modulation of materials surface properties in the CMP process is also analyzed in detail. This will provide a reference for improving the surface characteristics on an atomic scale. Finally, the challenges that the polishing slurry is facing in the research of atomic-scale processing are put forward, and their future development directions are prospected too, which has profound practical significance for further improving the atomic-scale surface accuracy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3