High speed bidirectional dual-channel chaos secure communication based on semiconductor ring lasers

Author:

Wang Shun-Tian ,Wu Zheng-Mao ,Wu Jia-Gui ,Zhou Li ,Xia Guang-Qiong ,

Abstract

Chaos is a fascinating phenomenon of nonlinear dynamical systems, and optical chaos communication has been one of potential frontier techniques to implement secure transmission of information. In this paper a novel high-speed bidirectional dual-channel chaos secure communication system is proposed based on semiconductor ring lasers (SRLs). In this system, the time delay signatures in chaotic output of clockwise (CW) and counterclockwise (CCW) patterns from a driving SRL (D-SRL) are firstly suppressed by using the double optical cross-feedback frame. Then, the chaotic output of D-SRL is injected into two response SRLs (R-SRLs) to drive the corresponding CW and CCW patterns of R-SRLs that are synchronized and bandwidth enhanced simultaneously. Thus, a bidirectional dual-channel chaos communication could be built based on chaotic synchronization of the two R-SRLs. We theoretically investigated the chaotic characteristics of a D-SRL under double optical cross-feedback and the chaotic synchronization features between R-SRL1 and R-SRL2 under different driving conditions. Results show that the time delay signatures of CW and CCW patterns of D-SRL could be effectively hidden under proper feedback conditions. The bandwidths of CW and CCW patterns of the D-SRL could be enhanced significantly. Furthermore, high-quality isochronous synchronization between R-SRL1 and R-SRL2 can be realized by choosing appropriate injection strength and detuning frequency in D-SRL and R-SRLs. Finally, the communication performances of bidirectional dual-channel chaos secure communication based on this proposed system are preliminarily examined and discussed, and the simulated results demonstrate that for 10 Gbit/s message, the Q factor of decoded message could be maintained above 6 after 10 kilometers distance transmission.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3