Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation

Author:

Lan Dou-Dou ,Guo Xiao-Min ,Peng Chun-Sheng ,Ji Yu-Lin ,Liu Xiang-Lian ,Li Pu ,Guo Yan-Qiang , ,

Abstract

The researches on higher-order coherence and quantum statistics of light field are the important researching issues in quantum optics. In 1956, Hanbury-Brown and Twiss (HBT) (Hanbury-Brown R, Twiss R Q 1956 Nature 177 27) revolutionized optical coherence and demonstrated a new form of photon correlation. The landmark experiment has far-reaching influenced and even inspired the quantum theory of optical coherence that Glauber developed to account for the conclusive observation by HBT. Ever since then, the HBT effect has motivated extensive studies of higher-order coherence and quantum statistics in quantum optics, as well as in quantum information science and cryptography. Based on the HBT scheme, the degree of coherence and photon number distribution of light field can be derived from correlation measurement and photon counting technique. With the rapid development of the photoelectric detection technology, single-photon detection, which is the most sensitive and very widespread method of optical measurement, is used to characterize the natures of light sources and indicate their differences. More recently, HBT scheme combined with single-photon detection was used to study spatial interference, ghost imaging, azimuthal interference effect, deterministic manipulation and detection of single-photon source, etc. Due to broadband RF spectrum, noiselike feature, hypersensitivity to the initial conditions and long-term unpredictability, chaotic laser meets the essential requirements for information security and cryptography, and has been developed in many applications such as chaos-based secure communications and physical random number generation, as well as public-channel secure key distribution. But the research mainly focused on macroscopic dynamics of the chaotic laser. Moreover, the precision of measurement has reached a quantum level at present. Quantum statistcs of light field can also uncover profoundly the physical nature of the light. Thus, it is important to exploit the higher-order degree of coherence and photon statistics of chaotic field, which contribute to characterizing the field and distinguishing it from others. In this paper, photon number distribution and second-order degree of coherence of a chaotic laser are analyzed and measured based on HBT scheme. The chaotic laser is composed of a distributed feedback laser diode with optical feedback in fiber external cavity configuration. The bandwidth of the chaotic laser that we obtain experimentally is 6.7 GHz. The photon number distribution of chaotic laser is fitted by Gaussian random distribution, Possionian distribution and Bose-Einstein distribution. With the increase of the mean photon number, the photon number distribution changes from Bose-Einstein distribution into Poissonian distribution and always accords with Gaussian random distribution well. The second-order coherence g(2)(0) drops gradually from 2 to 1. By changing the bias current (I = 1.0Ith-2.0Ith) and feedback strength (010%), we compare and illustrate different chaotic dynamics and g(2)(0). From low frequency fluctuation to coherence collapse, the chaotic laser shows bunching effect and fully chaotic field can be obtained at the broadest bandwidth. Furthermore, the physical explanation for sub-chaotic or weakening of bunching effect is provided. It is concluded that this method can well reveal photon statistics of chaotic laser and will open up an avenue to the research of chaos with quantum optics, which merges two important fields of modern physics and is extremely helpful for the high-speed remote chaotic communication.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference36 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3