Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials

Author:

Qi Jun-Jie ,Xu Min-Xuan ,Hu Xiao-Feng ,Zhang Yue ,

Abstract

ZnO micro/nanowires were synthesized by chemical vapor deposition method. The morphology and structure of the products have been characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL) and micro-Raman scattering spectrometer, etc. Results show that the surface of the highly uniform ZnO wire is smooth and the as-synthesized ZnO wires show high crystal quality. Three types of UV detector are constructed using a single ZnO nanowire with different contact characteristics, and their corresponding performances are investigated systematically by using Keithley 4200-SCS and other equipments. All of the three different devices exhibit good rectifying characters and significant responsivity to ultraviolet light. The devices show self-driven features at zero bias. Compared with the devices made from Schottky contact and ZnO/PEDOT:PSS film, the present single ZnO nanowire/p-Si film devices with heterojunctions have the best self-powered function, which can be attributed to the stronger built-in electric field as well as the smaller dark current due to the insulating layer on the p-Si film. At zero bias, the fabricated ZnO nanowire/p-Si film device can deliver a dark current of 1.210-3 nA and a high photosensitivity of about 4.5103 under UV illumination. The response of the devices made from ZnO nanowire/p-Si film to UV illumination in air is pretty fast with the rise time of about 0.7 s and the fall time of about 1 s, which could be attributed to the fact that the photo-generated electron-hole pairs in the depletion layer is quickly separated by the built-in electric field, leading to a rapid response speed and a larger photocurrent. Comparison among the three kinds of devices indicates that the devices made from ZnO nanowire/p-Si film are the best candidate for UV detectors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3