Room temperature gas sensing property and sensing mechanism of Sn-doped ZnO thin film

Author:

Xing Lan-Jun ,Chang Yong-Qin ,Shao Chang-Jing ,Wang Lin ,Long Yi ,

Abstract

Sn-doped ZnO and pure ZnO thin films are deposited on glass substrates with prepared electrode by the chemical vapor deposition method. The gas sensing performances of Sn-doped ZnO and pure ZnO thin films are investigated by our home-made system at room temperature, and the gas sensing test results reveal that Sn-doped ZnO thin film exhibits high gas response to ethanol and acetone, while no response is detected for pure ZnO to ethanol or acetone at room temperature. Sn-doped ZnO thin film also has high selectivity that the response to ethanol is higher than that to acetone in the same measurement conditions, and the response of Sn-doped ZnO thin film sample to ethanol is almost the third largest when the concentration is 320 ppm. The typical scanning electron microscopy images reveal that these two samples are tetrapod-shaped ZnO whiskers with diameters in a range of about 150-400 nm. X-ray diffraction results indicate that all the samples are of wurtzite structure. Neither trace of Sn, nor that of Sn alloy nor that of Sn oxide is detected in the Sn-doped ZnO film, while its diffraction peak shifts towards the left compared with that of pure ZnO sample, which suggests that Sn atoms exist in the form of interstitial atoms in the ZnO crystal. The energy dispersive spectrum shows that the Sn-doped ZnO thin film is composed of Zn and O elements, and no Sn signal is defected. Photoluminescence spectra reveal that both Sn-doped ZnO and pure ZnO films have ultraviolet light emission peaks and green emission peaks, while the intensities of the defect emissions are significantly enhanced by doping of Sn. In addition, no gas response to ethanol is detected after Sn-doped ZnO thin film has been annealed in the air, which indicates that the room temperature gas sensitivity of the Sn-doped ZnO thin film may be related to its high defect concentration. The working mechanism of Sn-doped ZnO thin film is explained by a free electron random scattering model. As is well known, ZnO semiconductor gas-sensor is of surface-controlled type. In this work, upon exposure to ethanol vapor, the physical absorbed ethanol molecules acting as scattering centers can reduce the mean free path of the electrons in the surface of the film, changing the mean free time n, which would increase the resistance of Sn-doped ZnO thin film at room temperature. This work provides a simple method of fabricating the highly sensitive ethanol gas sensor operating at room temperature, which has great potential applications in gas sensor field.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3