Computer simulation on temperature-dependent internal charging of complex dielectric structure

Author:

Yi Zhong ,Wang Song ,Tang Xiao-Jin ,Wu Zhan-Cheng ,Zhang Chao , ,

Abstract

Some dielectric structures on satellites would experience temperature variation in a relatively large range, giving rise to a considerable change in its conductivity and consequently resulting in a significant influence on the dielectric internal charging. However, due to the limitation to the model of conductivity versus temperature and the tool for three-dimensional (3D) simulation of internal charging, this temperature dependence has not attracted much attention. Therefore, the conductivity of a satellite used modified polyimide is measured in a temperature changeable vacuum environment under high electric field (in MV/m). Keithley 6517 B is used to capture the mild electrical current in a relatively long measuring time (several hundred seconds). According to the Arrhenius temperature dependence and considering the conductivity enhancement due to high electric field, good agreement is obtained between fitted data and measured results by setting the activation energy to be 0.40 eV. In addition, the radiation induced conductivity (RIC) is taken into account by using the Fowler model. The conductivity at room temperature is found to be comparable to the RIC from the condition with 2 mm aluminum shielding. Using the derived results, the internal charging simulation in three dimensions is carried out for a selected part of a structure in this material, where Geant4 is used to derive the distribution of charge deposition and radiation dose in three dimensions. The incident energetic electrons are assumed to follow the exponential distribution under geosynchronous orbit severe radiation condition where the flux of electrons with energy larger than 2 MeV is assumed to be 1.0×109 m-2·-1·sr-1. It is found that the internal charging will become more serious as the temperature decreases. The charging time is about 1 h at temperature 330 K, whereas this time is increased to 10 h for temperature below 250 K. The most serious charging domain appears around the boundary line of the grounding surface close to the radiation source, where the electric field strength exceeds 107 V/m under the condition of 2 mm aluminum board with temperature 250 K. So the dielectric breakdown discharge is most likely to occur within this domain. Above all, under the condition of the material intrinsic conductivity (mainly depending on temperature) comparable to the radiation induced conductivity, temperature will play an important role in internal charging. This model for temperature-dependent conductivity and the method of 3D simulation of internal charging have great significance in both further evaluating spacecraft internal charging and implementing well protective designs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Ferguson D C 2012 IEEE Trans. Plasma Sci. 40 139

2. Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

3. Huang J G, Chen D, Shi L Q 2004 Chin. J. Space Sci. 24 346 (in Chinese) [黄建国, 陈东, 师立勤 2004 空间科学学报 24 346]

4. Violet M D, Frederickson A R 1993 IEEE Trans. Nucl. Sci. 40 1512

5. Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3