A technique for extracting the density of states of the linear region in an amorphous InGaZnO thin film transistor

Author:

Xu Piao-Rong ,Qiang Lei ,Yao Ruo-He ,

Abstract

Defects and weak bonds generated in the fabricating process of amorphous InGaZnO(a-IGZO) films distribute non-uniformly in the band gap of the a-IGZO film in the form of traps. These traps would capture the charges induced by gate voltage, and affect the linear region mobility, channel carrier density and so on, then the electrical properties in the linear region of a-IGZO thin film transistor. The model used is based on the mobility in linear region which is in direct proportion to the ratio of the free charge to the total induced charge in the channel, and then the free charge and the trapped charge are separated. From the ratio of the density of free carriers to that of the trapped, a direct relationship with the derivative of the free charge with respect to surface potential, and the derivative of the trapped charge with respect to surface potential is calculated by bringing in the gate voltage that serves as an intermediate variable between the linear region mobility and the total induced charge. In this way, the free carrier density and the trapped carrier density can be separated by using the transfer characteristic and capacitor-voltage characteristic. Poisson's equation and Gauss theorem are applied to the interface between the channel layer and the insulating layer. In consideration of the non-uniform characteristic between the surface potential and the gate voltage, the relationship between the free carrier density and the surface potential, the trapped carrier density and the surface potential are obtained. Finally, the density of states in the linear region could be gained by differentiating the trapped carrier density with respect to surface potential.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3