Studies on carrier-blocking structures for up-conversion infrared photodetectors

Author:

Kang Jian-Bin ,Hao Zhi-Biao ,Wang Lei ,Liu Zhi-Lin ,Luo Yi ,Wang Lai ,Wang Jian ,Xiong Bing ,Sun Chang-Zheng ,Han Yan-Jun ,Li Hong-Tao ,Wang Lu ,Wang Wen-Xin ,Chen Hong , ,

Abstract

Infrared (IR) photodetectors have been widely used in the fields of both civil and military applications such as environmental monitoring, medical diagnostics, satellite remote sensing and missile guidance, etc. In conventional large scale focal plane array (FPA) IR imaging, the thermal mismatch between IR photodetectors and silicon readout circuits will inevitably lead to the degradation of the device performance. An up-conversion IR photodetector, which converts IR photons to short-wavelength photons for Si-CCD-based imaging, can avoid thermal mismatch caused by hybridization with silicon readout circuits, resulting in a low-cost way for large array IR imaging. The operation principle of the semiconductor up-conversion IR photodetector is based on electron transitions and carrier transportation in different functional sections including absorption section, transportation section and emission section, hence the carrier distribution in the device structure has a crucial influence on the device performance. In order to achieve low dark current, carriers are expected to be non-uniformly distributed in the up-conversion device structure. Designing and optimizing the carrier-blocking structure are usually the key issues to acquire inhomogeneous carrier distribution. In this paper, up-conversion infrared photodetectors with various hole-blocking structures are investigated both theoretically and experimentally. Firstly the carrier distributions are calculated by self-consistently solving the Schr?dinger equation, Poisson equation, current continuity equation and carrier rate equation. Then the influence of the carrierblocking structure on the device performance is analyzed by electroluminescence measurements on the corresponding epitaxial structures. According to the theoretical and experimental results, it is found that a 2-nm-thick AlAs barrier layer can block holes effectively without hampering the electron transportation, which is necessary for the up-conversion infrared photodetectors. However, other attempts to block holes, such as light n-doping in the transportation section or lowering the injection barrier, do not work well. In addition, the influences of the thickness and height of the blocking barrier and the operation temperature on the carrier distributions are also studied. When the thickness of the blocking barrier is less than 2 nm, the thicker or the higher is the barrier, the better is the blocking effect. However, when the thickness of the blocking barrier is larger than 2 nm, the blocking effect is not persistently enhanced with increasing thickness because the tunneling process is almost fully suppressed. Furthermore, with the same blocking barrier parameters, lowering the operation temperature can lead to better blocking effect. This work demonstrates the utilization and effect of carrier-blocking structures in semiconductor devices which deamnd an inhomogeneous carrier distribution.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference15 articles.

1. Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

2. Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

3. Martin Walther, Robert Rehm, Johannes Schmitz, Jasmin Niemasz, Frank Rutz, Andreas Wörl, Lutz Kirste, Ralf Scheibner, Joachim Wendler, Johann Ziegler 2011 Proc. of SPIE 7945 79451N

4. Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424 (in Chinese) [徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫 2007 物理学报 56 5424]

5. Luo Y, Hao Z B, Wang L, Kang J B, Wang L 2011 CN patent ZL 201110438999.4 (in Chinese) [罗毅, 郝智彪, 王磊, 康健彬, 汪莱 2011 中国专利 ZL 201110438999.4]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3