Phase change properties of ZnSb-doped Ge2Sb2Te5 films

Author:

Tian Man-Man ,Wang Guo-Xiang ,Shen Xiang ,Chen Yi-Min ,Xu Tie-Feng ,Dai Shi-Xun ,Nie Qiu-Hua , ,

Abstract

ZnSb-doped Ge2Sb2Te5 films have been deposited by magnetron co-sputtering using separated ZnSb and Ge2Sb2Te5 alloy targets. The concentrations of ZnSb dopant in the ZnSb-added Ge2Sb2Te5 films, measured by using energy dispersive spectroscopy (EDS), are identified to be 5.4, 9.9, 18.7 and 24.3 at. %, respectively. X-ray diffraction (XRD), in situ sheet resistance measurements, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), are used to analyze the relationships among the composition, structures and properties of the films. The sheet resistance as a function of the temperature (R-T) is in situ measured using the four-probe method in a home-made vacuum chamber. It is found that the crystallization temperature of ZnSb-doped Ge2Sb2Te5 films are much higher than that of conventional Ge2Sb2Te5 (~168℃). The higher crystallization temperature is helpful to improve the amorphous thermal stability. Data retention can be obtained by the extrapolated fitting curve based on the Arrhenius equation. It is shown that the values of 10-yr data retention for ZnSb-doped Ge2Sb2Te5 films are higher than that of conventional Ge2Sb2Te5 film (~ 88.9℃). XRD patterns of the as-deposited films when annealed at 200℃, 250℃, 300℃, and 350℃ show that ZnSb-doping can suppress the phase transition from fcc phase to hex phase. XPS spectra are further used to investigate the binding state of (ZnSb)18.7(Ge2Sb2Te5)81.3, suggesting that the Zn–Sb and Zn–Te bonds may exist in an amorphous state. In addition, we have measured the dark-field TEM images, selected area electron diffraction patterns, and high-resolution transmission electron microscopy images of the (ZnSb)18.7(Ge2Sb2Te5)81.3 films. Apparently, the films show a uniform distribution of crystalline phase with the dark areas surrounded by bright ones (Zn–Te or Zn–Sb domain). A static tester using pulsed laser irradiation is employed to investigate the phase transition behavior in nanoseconds. Results show that the ZnSb-doped Ge2Sb2Te5 films exhibit a faster crystallization speed. Among these samples, the (ZnSb)24.3(Ge2Sb2Te5)75.7 film exhibits a higher crystallization temperature of 250℃ and the 10 years data retention is 130.1℃. The duration of time for crystallization of (ZnSb)24.3(Ge2Sb2Te5)75.7 is revealed to be as short as ~64 ns at a given proper laser power 70 mW. A reversible repetitive optical switching behavior can be observed in (ZnSb)24.3(Ge2Sb2Te5)75.7, confirming that the ZnSb doping is responsible for a fast switching and the compound is stable with cycling. These excellent properties indicate that the (ZnSb)24.3(Ge2Sb2Te5)75.7 film is a potential candidate as the high-performance phase change material.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3