Study of plant fluorescence properties based on laser-induced chlorophyll fluorescence lifetime imaging technology

Author:

Wan Wen-Bo ,Hua Deng-Xin ,Le Jing ,Yan Zhe ,Zhou Chun-Yan ,

Abstract

Plant fluorescence is a susceptible signal in plant fluorescence remote sensing detection. In order to solve this problem, a technique for plant chlorophyll fluorescence lifetime imaging is presented to evaluate living status for plant growth and environmental monitoring. A concave lens is used to expand laser beam at a wavelength of 355 nm, and the living plant is exposed in this laser light source to excite chlorophyll fluorescence. And the chlorophyll fluorescence signals are detected by an intensification charge coupled device. Time resolved measurement method is used in this article, so that every time the same fluorescence signals can be excited by the same laser pulse. Meanwhile, the delay time needed for triggering intensification charge coupled device should be changed consecutively, and the whole discrete fluorescence signal can be obtained. The discrete fluorescence signals from the particular location points of the plant are fitted. An improved method of forward iterative deconvolution is used to retrieve the corresponding fluorescence lifetime, and the high-precision fluorescence lifetime can be obtained. Furthermore, the fluorescence lifetime values at all the location points are retrieved to obtain the distribution map of chlorophyll fluorescence lifetime. This method can give the chlorophyll fluorescence image efficiently. The distribution map of fluorescence lifetime can more effectively reflect the plant chlorophyll concentration than the fluorescence intensity image does. The physical property of chlorophyll fluorescence lifetime from living plants has been studied preliminarily, indicating that the plant physiological status is related to its fluorescence lifetime to a certain extent; and the chlorophyll fluorescence lifetime and plant environment have a subtle and complex correlation. In the future, the relationship between chlorophyll fluorescence lifetime and plant environment will be expected to study with the cooperation of biophysicist.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Janusauskaite D, Feiziene D 2002 Acta. Agr. Scand. B-S. P. 62 7

2. Tol C, Verhoef W, Rosema A 2009 Agr. Forest Meteorol. 149 96

3. Men Z W, Fang W H, Li Z W, Qu G N, Gao S Q, Lu G H, Yang J G, Sun C L 2010 Chin. Phys. B 19 8

4. Fu C Y, Ng B K, Razul S G 2009 J. Biomed Opt. 14 064009

5. Zhao M, Peng L L 2010 Opt. Lett. 35 2910

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3