Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements

Author:

Rao Zhi-Min ,Hua Deng-Xin ,He Ting-Yao ,Le Jing ,

Abstract

Biological aerosols which could cause diseases of human beings, animals and plants, are living particles suspended in the atmosphere. Ultraviolet laser induced fluorescence has been developed as a standard technique used to discriminate between biological and non-biological particles. As an effective tool of remote sensing, fluorescence lidar is capable of detecting concentration of biological aerosols with high spatial and temporal resolutions. Intrinsic fluorescence, one of the most important characteristics of biological aerosols, has quite a large effect on the performances of fluorescence lidar. To investigate the effects of intrinsic fluorescence on biological aerosols, we design an ultraviolet laser induced fluorescence lidar at an excited wavelength of 266 nm, with a repetition rate of 10 Hz. Fluorescence signals are collected by a Cassegrain telescope with a diameter of 254 mm, in which fluorescence spectra of 300-800 nm are mainly considered. A spectrograph and a multichannel photomultiplier tube (PMT) array detector are employed to achieve the fine separation and highefficiency detection of fluorescence signals. According to the present configuration, we perform a series of simulations to estimate the measurement range and the concentration resolution of biological aerosols, with a certain pulse energy. With a relative error less than 10%, theoretical analysis shows that designed fluorescence lidar is able to detect the biological aerosols within a range of 1.5 km at a concentration of 1000 particles·L-1. When the detection distance enlarges to 2.1 km, detectable wavelength range is limited to 300-310 nm. In addition, the lidar is capable of identifying minimum concentrations of biological aerosols with 2 particles·L-1 and 4 particles·L-1 at fluorescence wavelengths of 350 nm and 600 nm, respectively, where the induced pulse energy is set to be 60 mJ and detected range 0.1 km. With setting energies of 40 mJ and 20 mJ, minimum concentrations of biological aerosols decrease to 3 particles·L-1 and 6 particles·L-1, respectively, at a fluorescence wavelength of 350 nm. The relative error of minimum concentration resolution is about 2 particles·L-1, increasing rapidly with range. For a fluorescence wavelength of 600 nm, both the minimum concentration and the relative error show relatively high values, 5 particles·L-1 at 40 mJ and 10 particles·L-1 at 20 mJ, where the relative errors are found to be 2 particles·L-1 and 4 particles·L-1, respectively. The results prove that a shorter intrinsic fluorescence wavelength has a better effect on biological aerosol measurement. We believe that a proper intrinsic fluorescence wavelength will further improve the detection accuracy of biological aerosols.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3