Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics

Author:

Gao Zhong-Ke ,Hu Li-Dan ,Zhou Ting-Ting ,Jin Ning-De ,

Abstract

We optimize and design a new half-ring conductance sensor for measuring two-phase flow in a small diameter pipe. Based on the experimental signals measured from the designed sensor, we using the limited penetrable visibility graph we proposed construct complex networks for different flow patterns. Through analyzing the constructed networks, we find that the joint distribution of the allometric scaling exponent and the average degree of the network allows distinguishing different gas-liquid flow patterns in a small diameter pipe. The curve peak of the degree distribution allows uncovering the detailed features of the flow structure associated with the size of gas bubbles, the average degree of the network can reflect the macroscopic property of the flow behavior, The allometric scaling exponent is very sensitive to the complexity of fluid dynamics and allows characterizing the dynamic behaviors in the evolution of different flow patterns. In this regard, limited penetrable visibility graph analysis of fluid signals can provide a new perspective and a novel tool for uncovering the dynamical mechanisms governing the formation and evolution of different flow patterns.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3