Logarithmic minus peak second derivative time based depth prediction

Author:

Zeng Zhi ,Tao Ning ,Feng Li-Chun ,Zhang Cun-Lin , ,

Abstract

This paper proposes to use minus peak time of second derivative with respect to time on logarithmic curve of temperature versus time as a characteristic time for defect depth prediction in pulsed wave thermography. First, the paper introduces the basic principle of pulsed wave thermography, and constructs the theoretical relation between logarithmic minus peak second derivative time and the square of defect depth based on the solution of semi-infinite body. Then, two specimens of steel and aluminum were manufactured with flat-bottom holes to simulate defects. Thermographic image sequences of those two specimens were obtained by using pulsed wave thermography, and then the logarithmic minus peak second derivative time were extracted. The extracted characteristic time has a very good linearity relation with the square of defect depth, and this linearity could be used for defect depth prediction in practical applications. The advantages and disadvantages of the proposed method and the widely used logarithmic peak second derivative method are discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference13 articles.

1. Shepard S M, Hou Y, Lhota J 2004 CD-ROM proceedings of the 16th world conference on NDT, Aug 30-Sep 3, 2004 791

2. Chen D P, Zeng Z, Zhang C L, Jin X Y, Zhang Z 2012 Acta Phys. Sin. 61 094207 (in Chinese) [陈大鹏, 曾智, 张存林, 金学元, 张峥 2012 物理学报 61 094207]

3. Huo Y, Zhang C L 2012 Acta Phys. Sin. 61 144204 (in Chinese) [霍雁, 张存林 2012 物理学报 61 144204]

4. Zeng Z, Li C G, Tao N, Feng L C, Zhang C L 2012 NDT &E International 48 39

5. Favro L D, Jin H J, Wang Y X, Ahmed T, Wang X 1991 Review of progress in quantitative nondestructive evaluation. Proceedings of the 18th Annual Review, Brunswick, ME, July 28-Aug. 2, 1991, p447

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3