Author:
Zhang Geng-Ming ,Guo Li-Qiang ,Zhao Kong-Sheng ,Yan Zhong-Hui , ,
Abstract
We report in this paper that low-voltage indium-zinc oxide (IZO) junctionless thin-film transistors (TFT) can be fabricated at room temperature, and the device stability performance influenced by oxygen pressure is studied. IZO junctionless TFT has a high mobility and novel structure, but the oxide channel layers are vulnerable due to the influence of oxygen and water molecules, which will lead to the degradation of the device stability. In this study, we fabricate transparent and conductive IZO thin-films at room temperature as channel layers, and source/drain electrodes by controlling the oxygen flow, and also analyze the effect of oxygen on the stability of oxide junctionless TFT. In order to operate at low-voltage (2 nanoparticle films as gate dielectric, which have electron double layers (EDL) effect and large gate capacitance, and the TFTs show excellent electrical performance with small operating voltage of 1 V, large on/off ratio(>106), small subthreshold swing(20 cm2/V·s). The study indicates that the resistivity of IZO thin-film fabricated in increasing oxygen content, leads the threshold voltage to drift in a positive direction, and makes operating mode of TFT change from depletion mode to enhanced mode.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference14 articles.
1. Kim C, Huang P Y, Jhuang J W, Chen M C, Ho J C, Hu T S, Yan J Y, Chen L H, Lee G H, Facchetti A, Marks T J 2010 Org. Electron. 11 1363
2. Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [聂国政, 彭俊彪, 周仁龙 2011 物理学报 60 127304]
3. Yuan G C, Xu Z, Zhao W L, Zhang F J, Xu N, Tian X Y, Xu X R 2009 Chin Phys. B 18 3990
4. Shi W W, Li W, Yi D M, Xie L H, Wei W, Huang W 2013 Acta Phys. Sin. 61 228502 (in Chinese) [石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维 2013 物理学报 61 228502]
5. Ionescu A M 2010 Nature Nanotech. 5 178
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献