Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects

Author:

Ma Wen ,Zhu Wen-Jun ,Chen Kai-Guo ,Jing Fu-Qian ,

Abstract

The shock front structure and the plastic deformation of nanocrystalline aluminum under shock loading are investigated by using molecular dynamics simulations. The simulation results show that: after the elastic wave was generated, the grain boundary sliding and deformation dominated the early plastic deformation mechanisms, then the partial dislocations were nucleated at the deformed grain boundaries and spread within the grains, finally the process of stacking faults, deformation twins and full dislocation formation in the grain dominated the latter stage of the plastic deformation. The structural characteristics after the shock front swept over is that the stacking faults and the deformation twins are left in grains, and the majority of the full dislocations are annihilated at the opposite grain boundaries. It is reported for the first time that the shock front structure reflects the time sequence of two different plastic deformation mechanisms in nanocrystalline aluminum.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3