Author:
Gong Zhi-Qiang ,Wang Xiao-Juan ,Zhi Rong ,Feng Guo-Lin ,
Abstract
Based on recent studies of nonlinear science, we reconstruct dynamics of National Centre of Environment Prediction (NCEP) daily temperature series from 1948 to 2005 of grids located in China with the time-delay method and then analyse the dynamics structure by using dynamical correlation factor exponent Q.Eight significant temperature change regions are obtained. The characteristics of temperature changes and frequencies of extreme temperature in these regions are discussed, and the probable correlations between temperature changes and frequencies of extreme temperature are studied. Results indicate that, 1) the temperature and frequencies of extreme high temperature in ZhunGe’Er and North China both increased during the past 58 years, while frequencies of extreme low temperature in South China decreased. Furthermore, north oscillation, south oscillation, North Pacific oscillation and El Nio-south oscillation have distinct influence on temperature changes in North China, North-East China, west of West-South China and east of West-South China, while El Nio has distinct influence on South China and South East China. 2) The reason for warming during the past 58 years might be the increase of frequencies of extreme high temperature and the decrease of frequencies of extreme low temperature. 3) The abrupt change of extreme high/low temperature in the 1970s is 3—4 years later than that of abrupt temperature change. That is to say, the process of abrupt temperature change might be the inter-grade of extreme temperature from one stationary period to another stationary one.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献