Temporal and Spatial Variations of Extreme Climate Events in Northwestern China from 1960 to 2020

Author:

Liang Xiaoyan1,Niu Zhenmin2,Li Xiaolong13

Affiliation:

1. Research Institute of New Urbanization and Human Settlement in Shaanxi Province, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Center for Glacier and Desert Research, College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, China

3. College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

In the context of global warming, the frequency and intensity of extreme weather and climate events have been increasing. Characterized by scarce water resources and fragile ecosystems, Northwest China has experienced a climate shift since the 1980s. In this study, spatial and temporal patterns of changes in the indices of climate extremes, based on daily maximum and minimum temperature and precipitation at 172 meteorological stations in Northwest China, were analyzed for the period 1960–2020. A total of 26 indices divided into two categories, 16 extreme temperature indices and 10 extreme precipitation indices, were used. Analysis of these indices revealed a general warming trend in the region, which consistent with global warming. The regional occurrence of summer days, tropical nights, growing season length, warm nights, warm days, and warm spell duration index increased by 0.22, 0.14, 0.29, 0.73, 0.46, and 0.11 days/decade, respectively. Over the same period, the occurrence of frost days, icing days, cool nights, cool days, and cold spell duration index decreased by −0.38, −0.21, −0.93, −0.44, and −0.13 days/decade, respectively. The decreasing trends in cold extremes were greater than the increasing trends in warm extremes. Additionally, many regions have experienced increasing trends in several precipitation indices. The annual total wet-day precipitation increased by 5.3 mm/decade. Increasing trends were also evident in simple daily intensity index, heavy precipitation days, very heavy precipitation days, very wet days, and extremely wet days. Consecutive dry days decreased by −1.5 days/decade, while no significant change was observed in consecutive wet days. In contrast to the remarkable spatial consistency of temperature extremes, precipitation extremes exhibited large and expected spatial variability. Most precipitation indices showed increasing trends in the western region of Northwest China and decreasing trends in the eastern part of Northwest China. These results indicate a transition from cold–dry to warm–wet in Northwestern China. Our findings suggest that Northwest China is experiencing more extreme climate events, which could consequently impact hydrological processes, ecological processes, and human health. These observations increase our understanding of the interactions between climate change and regional climate variability, which is conducive to improving disaster prevention.

Funder

Key R&D Program of Shaanxi Province “key industry innovation chain (group)”

Think Tank Connotation Construction Project of Shaanxi Educational Committee

New Urbanization and Human Settlement in Shaanxi Province Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference79 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3