Research on simultaneous reconstruction of the temperature distribution of a 3D participating medium and its boundary

Author:

Feng Yu-Xiao ,Huang Qun-Xing ,Liang Jun-Hui ,Wang Fei ,Yan Jian-Hua ,Chi Yong ,

Abstract

In-situ and nonintrusive 3D temperature measurement is very important for combustion diagnosis and controlling of pollutants. The temperature reconstruction technique based on radiation inverse analysis has received intensive attention. In order to reduce the computation cost and take boundary temperature into consideration, a discrete method is presented for 3D temperature distribution determination for an absorbing, emitting and scattering combustion medium and its boundary by using the emission image measured by four CCD cameras. First the radiative source term is retrieved through the discrete transfer method. Then, the temperature is inferred from the blackbody intensity obtained by subtracting the media scattering and boundary reflecting contribution from the source term by the discrete ordinate approximation. The least squares minimum residual algorithm is improved to solve the ill-posed reconstruction equations. The performance of the proposed method is examined by numerical test. The effects of measurement noise and radiative properties on the reconstruction accuracy are investigated. The results show that the method proposed in this paper is capable of reproducing the temperature of the medium and its boundary accurately, even with noise. The reconstruction time cost is reduced significantly compared with those of other methods.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference79 articles.

1. Siewert C E 1993 JQSRT. 50 603

2. Li H Y, Yang C Y 1997 Int. J. Heat Mass Transfer 40 1545

3. Ozisik M N, Orlande H R B 2000 Inverse heat transfer: fundamentals and applications (New York: Taylor Francis) pp253-288

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3