First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains

Author:

Sun Wei-Feng ,

Abstract

The atomic structure, the mechanical properties, the electronic band structure, and the phonon structure of (InAs)1/(GaSb)1 superlattice atomic chain are investigated by first-principles pseudopotential plane wave method, and the quantum transport properties are also calculated by the density functional theory numerical atomic orbit pseudopotential method in combination with nonequilibrium Green's function formalism. Compared with two-dimensional layer structural (InAs)1/(GaSb)1 superlattice, the (InAs)1/(GaSb)1 superlattice atomic chains have obviously different band structures, and represent metal energy band characteristics in certain conditions. The calculated mechanical strength of (InAs)1/(GaSb)1 superlattice atomic chains indicates that such structures can sustain the strain as high as =0.19. The structural stability of (InAs)1/(GaSb)1 superlattice atomic chains is investigated by full Brillouin zone analysis for phonon structure. The electron transport calculations for (InAs)1/(GaSb)1 superlattice atomic chain segments in between Al electrodes show that the conductance exhibits nontrivial features as the chain length or strain is varied. The calculated optical absorption spectra represent precipitous cutoff absorptions in infrared regime, and the cutoff wavelength varies with chain structure. InAs/GaSb superlattice atomic chains are predicted to be applied to infrared optoelectronic nanodevices, modifying optoelectronic response wavelength range by changing the structures of superlattice atomic chains.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3