Chaotic characteristics analysis and prediction model study on wind power time series

Author:

Zhang Xue-Qing ,Liang Jun ,

Abstract

In order to reveal the internal dynamic property of wind power time series the nonlinear analysis method is used to identify the chaotic property of wind power set which is the basis for the prediction of the wind power time series. Firstly day correlation property on wind power time series of a certain wind farmer is analyzed. Secondly the largest Lyapunov exponent of wind power set is calculated on the basis of phase space construction to verify the presence of chaos in wind power time series. The ultra-short-term predicted of wind power would produce larger errors by using the Volterra filter multi-step prediction so the predicted results of Volterra filter are corrected by combining the results predicted by Local-region Multi-steps Method and the largest Lyapunov exponent method with weighted Markov chain and ordered operator. Finally the prediction on wind power of a certain wind farmer is presented and the simulation results illustrate that the correction forecasting model improves high predictive accuracy effectively, which provides a useful reference for wind power prediction by the Volterra filter multi-step method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Mcelroy M B, Lu X 2009 Science 325 1378

2. Feng S L, Wang W S, Liu C, Dai H Z 2010 Proceedings of the CSEE 30 1 (in Chinese)[冯双磊, 王伟胜, 刘纯, 戴慧珠 2010 中国电机工程学报 30 1]

3. Yang X Y, Xiao Y, Chen S Y 2005 Proceedings of the CSEE 25 1 (in Chinese) [杨秀媛, 肖洋, 陈树勇 2005中国电机工程学报 25 1]

4. Pan D F, Liu H, Li Y F 2008 Proceedings of the CSEE 28 87 (in Chinese) [潘迪夫, 刘辉, 李燕飞 2008 中国电机工程学报 28 87]

5. Shi H T, Yang J L, Ding M S, Wang J M 2011 Automation of Electric Power Systems 35 44 (in Chinese)[师洪涛, 杨静玲, 丁茂生, 王金梅 2011 电力系统自动化 35 44]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3