Effects of Ge profile in base region on thermal characteristics of SiGe HBTs

Author:

Zhao Xin ,Zhang Wan-Rong ,Jin Dong-Yue ,Fu Qiang ,Chen Liang ,Xie Hong-Yun ,Zhang Yu-Jie ,

Abstract

As is well known, the base Ge composition can improve the DC characteristics, frequency characteristics and noise characteristics of SiGe HBTs. However, the reports about the effects of Ge profile on HBTs thermal characteristics are rare. In this paper, by use of SILVACO simulator, the effects of different Ge gradients on thermal and electrical characteristics of SiGe HBT are investigated. It is found that under the same total Ge amount condition, as Ge gradient increases, the fT of device increases significantly, the uniformity of temperature distribution becomes better, the influences of temperature on the and fT are weakened, but the gain becomes smaller. For the device with uniform Ge composition, the is high, but the influence of temperature on the is enormous, the uniformity of temperature distribution is poor. Based on these results, in order to make a tradeoff among thermal, gain and frequency characteristics, a novel Ge composition structure with the combination of the uniform and graded Ge composition is proposed. The results show that the novel Ge composition structure SiGe HBT has good performances lower peak temperature, better uniform temperature profile, smaller variabilities of and fT with temperature, sufficient high and fT compared with the uniform Ge composition device. These new results provide valuable reference for the device thermal design, and are supplemental to the research and application of SiGe HBTs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3