Dynamical modeling and border collision bifurcation in pulse train controlled discontinuous conduction mode buck converter

Author:

Sha Jin ,Bao Bo-Cheng ,Xu Jian-Ping ,Gao Yu , ,

Abstract

According to the charge variation of output capacitor in a switching cycle, the output voltage variation in a switching cycle can be obtained, from which an approximate discrete-time model of pulse train (PT) controlled buck converter operating in discontinuous conduction mode (DCM) is established. Based on the model, the border-collision bifurcations of the PT controlled DCM buck converter with the variations of the load resistance and the input voltage are studied. By constructing the corresponding iterative map curves, the stabilities of the fixed points, formed by the orbits of period-1, period-2, period-3 and so on, are analyzed, and the mechanisms of border-collision bifurcations of the converter under different operation states are revealed. The analysis results indicate that with the variation of parameters, the PT controlled DCM buck converter always operates in different periodic states, in which the change of the operation mode with periodic state is caused by the border-collision bifurcation and the lyapunov exponent is always less than zero. By using PSIM circuit simulation software, the time domain waveforms and phase portraits under different load resistances are obtained. Experimental results are provided to verify the correctnesses of theoretical analyses and circuit simulations and the feasibility of dynamical modelling.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3