Ocean surface wave effect on the spatial characteristics of ambient noise

Author:

Zhou Jian-Bo ,Piao Sheng-Chun ,Liu Ya-Qin ,Zhu Han-Hao , , ,

Abstract

The ocean ambient noise field experiences a stochastic process of many such noise sources and the respective interactions of their wave fields with the waveguide boundaries. At frequencies of about 1 kHz and higher, forward scattering from surface wave can strongly affect shallow water sound propagation. However, most of the available ambient forecasting models do not consider the effects of multiple forward scattering from surface wave. Therefore, there is a need for an accurate method of predicting ambient noises at middle and high-frequency which can account for surface scatterings. Aiming at such a requirement, a propagation model based on transport theory method is described which yields the second-order moment of the acoustic field. Monte Carlo simulations of acoustic propagation loss are employed to validate the transport theory method. The mode number dependence of mode coupling phenomenon is demonstrated at 1000 Hz via the competing effects of mode coupling and attenuation ranges. Low and middle propagating modes are seen to have a smaller coupling range than the attenuation range, allowing mode coupling effects to take precedence over attenuation effects. The mode energies and the coherences are also examined, and it is found that the mode coupling rate for surface wave is significant, but strongly dependent on mode number. Mode phase randomization by surface waves is found to be dominated by coupling effects. On the basis of transport theory propagation model, connecting with the properties of ambient noise sources, a spatial characteristic model for ambient noise under surface wave is presented. Further, the effects of surface wave on ambient noise intensity, vertical correlation and vertical directionality are analyzed. Simulation results show that the surface wave may result in energy transfer from medium modes to low modes and high modes, the rate of energy transfer depends on the mode energy difference. Since the medium mode plays an important role in noise intensity, the noise intensity decreases with the increase of surface wave. In addition to noise intensity, the vertical correlation of ambient noise also decreases due to mode phase randomization by surface wave. Besides, mode coupling can also lead to a change of vertical beam intensity distribution, positive high-angle beams associated with direct, surface, and bottom-surface-bounced rays become weaker, while negative high-angle beams associated with bottom bounced rays become stronger. Since the vertical directionality is sensitive to surface wave, the model can be applied to ocean surface parameter inversion. In summary, the model provided in this paper is closer to actual ocean waveguide and has future prospect in ocean acoustic engineering application.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Guo X Y, Li F, Tie G P 2014 Physics 43 723 (in Chinese)[郭新毅, 李凡, 铁广鹏2014物理43 723]

2. Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938

3. Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377

4. Lin J H, Chang D Q, Ma L, Li X J, Jiang G J 2001 Acta Acust. 26 217 (in Chinese)[林建恒, 常道庆, 马力, 李学军, 蒋国建2001声学学报26 217]

5. Arnaud D, Eric L, Mickael T 2003 J. Acoust. Soc. Am. 113 2973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3