heoretical model of influence of frequency on thermal breakdown in semiconductor device

Author:

Zhang Cun-Bo ,Yan Tao ,Yang Zhi-Qiang ,Ren Wei-Tao ,Zhu Zhan-Ping ,

Abstract

In order to analyze the influence of frequency on thermal breakdown in semiconductor device, the influences of frequency on heat generation and heat conduction in the hot zone are introduced into the theoretical model. The heat transfer equation is solved by the Green's function method, and the error function is approximated. Then, the expressions of temperature in the hot zone and failure power of semiconductor device including frequency and pulse width are derived. The change rules of failure power with the increasing of pulse width under different frequencies and with the increasing of frequency under different pulse widths are obtained. The result shows that the expression for center temperature in hot zone caused by the failure power is divided into four time regions, i.e., regions I-IV, by three thermal diffusion times ta, tb, and tc. The three diffusion times ta, tb, and tc are related to the side lengths a, b and c(c≤b≤a) of the hot zone represented by a rectangular parallelepiped, respectively. In region I(0≤t≤tc), the relation between failure power Pf and failure time t is Pf∝t-1. In this region, the failure time is short and little heat is lost from the surface of hot zone so that the adiabatic term(t-1) dominates. In region Ⅱ(tcttb), the relation between failure power Pf and failure time t is Pf t-1/2. In this region, it is indicative of heat loss from the hot zone to its surrounding medium. In region Ⅲ(tb≤t≤ta), the relation between failure power Pf and failure time t is Pf∝1/ln t. In region IV(t >ta), the failure power Pf is constant. In this region, the failure time is very large and thermal equilibrium can be established so that the steady state term dominates. The relation between failure power and frequency is divided into two parts. In part one, the failure power increases with the increasing of frequency; in part two, the failure power is nearly constant with the increasing of frequency. Meanwhile, the physical interpretation of the influence of frequency on failure power is given. From region I to region IV, each heat transfer rate increases with pulse width. The lower the frequency, the more the injection energy during region I or region Ⅱ is, when the total injection energy is constant. The heat transfer rate is slower in region I or region Ⅱ, so the energy converted into heat will be more and the temperature in the hot zone will be higher, thus the device is burned out easily.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3