Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation

Author:

Wu Kong-Ping ,Sun Chang-Xu ,Ma Wen-Fei ,Wang Jie ,Wei Wei ,Cai Jun ,Chen Chang-Zhao ,Ren Bin ,Sang Li-Wen ,Liao Mei-Yong , ,

Abstract

Diamond is regarded as one of the most promising semiconductor materials used for high power devices because of its superior physical and electrical properties, such as wide bandgap, high breakdown electric field, high mobility, and high thermal conductivity. Highpower diamond devices are now receiving much attention. In particular, Schottky diode based on a metal/diamond junction has promising applications, and high breakdown voltage has been achieved, though unfortunately its forward resistance is high. In this paper, the first principles calculations are performed to study the electronic structure of interface and the Schottky barrier height of Al-diamond interface. The projection of the density of states on the atomic orbitals of the interface atoms reveals that the typical Al-induced gap states are associated with a smooth density of states in the bulk diamond band gap region, and these gap states are found to be localized within three atom layers. At the same time, electronic charge transfer makes the Fermi level upgrade on the side of diamond. Besides, the typical Al-induced gap state model gives a simple picture about what determines Schottky barrier height at Al-diamond interface, by assuming an ideal, defect-free and laterally homogeneous Schottky interface in which the only interaction comes from the decay of the electron wave function from the metal into the semiconductor, which in turn induces electronic charges to be rearranged in the region close to the interface. As for the electronic charge transfer, this potential shift can be extracted by subtracting the superimposed planar or macroscopically averaged electrostatic potentials of the Al and diamond surfaces (at frozen atomic positions), from the planar or macroscopically averaged potential of the relaxed Al-diamond interface. The electronic charge transfer suggests that the formation of an interface should be associated with the formation of new chemical bonds and substantial rearrangements of the electron charge density. Especially, we obtain the Schottky barrier height of 1.03 by the first principle, which is in good agreement with the results from phenomenological model and experiment. The research results in this paper can provide a theoretical basis for the research of the metal diamond Schottky junction diode, and can also give a theoretical reference for the research of the metal-semiconductor highpower device based on diamond material.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3