Influence of the external condition on the damage process of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

Author:

Xi Xiao-Wen ,Chai Chang-Chun ,Liu Yang ,Yang Yin-Tang ,Fan Qing-Yang ,

Abstract

Electronic system and device are vulnerable under intensive electromagnetic pulse (EMP) environment, where low noise amplifer (LNA) is a typical sensitive instance for electromagnetic energy. This work focuses on the EMP-induced damage effect of GaAs pseudomorphic high electron mobility transistor (PHEMT), which is the core part of LNA. Using the simulation softeware Sentaurus TCAD, an EMP-induced damage model of the GaAs PHEMT is established in this paper, and verified through the experimental result. It is shown that the damage position of the device under the injection EMP exists in the center area under gate terminal. Based on this model and aiming at EMP parameters and external resistances, the influence of the external conditions on the damage effect of the device is investigated. The results indicate that the damage time is related to EMP parameters obviously:1) the damage time is inversely proportional to EMP amplitude since higher power density is absorbed under a stronger EMP; 2) the damage time is in direct proportion to signal rising time since the breakdown time is postponed under EMP with a slower rising edge. Furthermore, it is found that a load resistor is able to weaken current channel which is effective in delaying the damage process, and this effect is more obvious, with load resistor connected with source terminal. It should be noted that the results are beneficial to and valuable in hardening method against EMP of semiconductor devices. It is feasible to design external circuit protection units, aiming at attenuating signal amplitude and increasing the rising time of injected pulse. Another effectual approach is to enlarge the source series resistance under the premise of the performance meeting the requirements.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3