Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system

Author:

Li Kai ,Liu Jun ,Liu Wei-Qiang ,

Abstract

Magnetohydrodynamic (MHD) heat shield system is a novel-concept thermal protection technique for hypersonic vehicles, which has been proved by lots of researchers with both numerical and experimental methods. Most of researchers neglect the Hall effect in their researches. However, in the hypersonic reentry process, the Hall effect is sometimes so significant that the electric current distribution in the shock layer can be changed by the induced electric field. Consequently, the Lorentz force as well as the Joule heat is varied, and thus the efficiency of the MHD heat shield system is affected.In order to analyze the influence of Hall effect, the induced electric field must be taken into consideration. According to the weakly-ionized characteristics of hypersonic flow post bow shock, the magneto-Reynolds number is assumed to be small. Therefore, the Maxwell equations are simplified with the generalized Ohm's law, and the induced electric field is governed by the potential Possion equation. Numerical methods are hence established to solve the Hall electric field equations in the thermochemical nonequilibrium flow field. The electric potential Poisson equation is of significant rigidity and difficult to solve for two reasons. One is that the coefficient matrix may not be diagonally dominant when the Hall parameter is large in the shock layer, and the other is that this matrix including the electric conductivity is discontinuous across the shock. In this paper, a virtual stepping factor is included to strengthen the diagonal dominance and improve the computational stability. Moreover, approximate factor and alternating direction implicit method are employed for further improving the stability. With these methods, a FORTRAN code is written and validated by comparing the numerical results with the analytical ones as well as results available from previous references. After that, relation between the convergence property and the virtual stepping factor is revealed by theoretical analysis and numerical simulations. Based on these work, a local variable stepping factor method is proposed to accelerate the iterating process. Results show that the convergence property is closely related to the mesh density and Hall parameter, and there exists a best stepping factor for a particular mesh as well as a particular Hall parameter. Since the best stepping factor varies a lot for different meshes and different Hall parameter, its appropriate value is hard to choose. The best value of stepping factor coefficient still exists in the local step factor method, but its value range is relatively smaller. More importantly, the local stepping factor method yields better convergence property than the regular constant one when employing a locally refined mesh.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3