A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator

Author:

Gao Dong-Bao ,Liu Xuan-Jun ,Tian Zhang-Fu ,Zhou Ze-Min ,Zeng Xin-Wu ,Han Kai-Feng ,

Abstract

Helmholtz resonator(HR) has already been demonstrated both theoretically and experimentally to be a metamaterial with negative mass density and negative bulk modulus simultaneously. The HR can resonate at a frequency corresponding to a wavelength much longer than its geometrical parameters. At this time, the incident acoustic energy can be located. Therefore, the HR structures are considered to be good choices for controlling low-frequency sound waves. Furthermore, existing results indicate that the wide forbidden band could be formed by a one-dimensional structure shunted with detuned HRs. Based on these aforementioned theories, a man-made acoustical structure with broadband low-frequency sound insulation effect is designed by circularly inbuilt HRs. Beyond this structure's surface, a two-dimensional quiet zone can be created. With the same simulated model, an experimental structure is fabricated based on PVC plastic material. The structure consists of five layerd circular plates. In the top four plates, two kinds of holes are drilled. The smaller holes in the top plate act as shot necks of the HR, while the bigger holes in the middle three plates serve as the cavities of the HR. They can construct 60 resonators with different resonant frequencies. Experiments are carried out to study its sound insulation properties. In the experiments, three kinds of HRs with resonant frequencies 785, 840 and 890 Hz from inner loop to outer loop, respectively, are formed. The experimental results are very coincident with the simulation results from the software of COMSOL Multiphysics based on finite element method, which shows that this structure has an excellent sound insulation effect in a frequency band of 680-1050 Hz, and the maximum insulation sound pressure level can reach 41 dB. Meanwhile, the distribution of the two-dimensional sound field is measured. The results point out that the range of the insulation area can be changed with the incident frequency. In addition, the sound insulation effect is sensitive to the resonant state of the HRs. When all of the resonators at the same loop resonate simultaneously, the insulation sound pressure level will be higher. On the contrary, the insulation sound pressure level will be lower because of the energy leaking through the positions where the HRs do not resonate with the others. This work will be of help for designing new sound protection devices for low-frequency sound waves.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3