Study on bandgap of a novel phononic crystal with low-frequency sound insulation

Author:

Han Dong-Hai1ORCID,Zhang Guang-Jun1,Zhao Jing-Bo1ORCID,Yao Hong1

Affiliation:

1. Department of Basic Sciences, Air Force Engineering University, Xi’an, Shaanxi 710051, China

Abstract

To solve the problem of low-frequency noise in the environment, a two-dimensional Helmholtz-type phononic crystal with a labyrinth tube was designed in the paper. First, the low-frequency band structure was calculated by the finite element method (FEM) and transfer matrix method (TMM). Second, the bandgap formation was analyzed by using an acoustic pressure field, and the “spring-oscillator” equivalent model of the structure was established. Finally, the influences of structural parameters on the first bandgap were investigated. Results show that there are four bandgaps in the frequency range of 0–300 Hz, and the lower limit of the first bandgap can be as low as 12.15 Hz, which improves the low-frequency sound insulation ability of phononic crystals of the same size. The calculation results of the two methods (FEM and TMM) are basically consistent. Research on the influencing factors of the bandgap shows that the increase in the length of the tube will reduce the upper and lower limits of the bandgap and narrow the bandgap width. With the increase of the lattice constant, the upper limit of the bandgap decreases, while the lower limit of the bandgap remains unchanged. The design provides a new method to solve the problem of low-frequency noise reduction.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3