Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon

Author:

Tao Hai-Yan ,Chen Rui ,Song Xiao-Wei ,Chen Ya-Nan ,Lin Jing-Quan , ,

Abstract

Arrays of sharp conical spike microstructures are created by repeatedly irradiating silicon surfaces with focused femtosecond laser pulses in SF6. The absorbance of light is increased to approximately 90% in a wavelength range from the near ultraviolet (0.25 m) to the near infrared (2.5 m) by the microstructured silicon surface. The microstructured surface presents pitch-black because of enhanced absorption with a broad wavelength range, which is called black silicon. The unique microstructure morphology of black silicon surface formed by femtosecond laser can also bring a lot of other surface functions, for example, self-cleaning and field emission. These functions make black silicon highly desirable in solar energy, detectors and other fields. Therefore, the forming mechanism and conditions of fabrication optimization for black silicon microstructure have always been the focus of research. In our work, the sample is moved by motor-controlled stage while the laser beam is fixed. In the case of laser beam scanning, arrays of sharp conical spikes on the silicon are manufactured in 70 kPa SF6. The aim of the experiment is to find how to optimize the distribution of the laser energy in a number of laser accumulation pulses (the combination of single pulse energy and pulse number) to control the surface morphology of the black silicon. Experimental results show that there appears a bottleneck effect of morphology size growth with the increase of laser irradiation (improving the single pulse energy or increasing pulse accumulation number). Excessive energy accumulation brings no extra effect on optimizing and controlling of microstructure morphology on the surface. Based on theoretical results obtained from a physical model we proposed, we find that the reason for this phenomenon is that the microstructure morphology induced by former sequence pulse modulates the laser energy absorption of current laser pulse, and changes the laser ablation efficiency of the current pulse. According to this physical mechanism, we propose a new way of optimizing surface morphology, with fixing the total laser irradiation energy. And the size and distribution of surface morphology can be achieved by optimizing the distribution of the laser energy in a number of laser accumulation pulses. This approach can not only improve the efficiency of silicon surface preparation of microstructures but also reduce the surface defects and damage. Furthermore, the proposed method can reduce the energy consumption in the process of femtosecond machining. It is of great significance for the engineering application of black silicon.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3