Reconstruction algorithm of chaotic signal based on generalized likelihood ratio threshold-decision

Author:

Ren Zi-Liang ,Qin Yong ,Huang Jin-Wang ,Zhao Zhi ,Feng Jiu-Chao , ,

Abstract

Blind signal reconstruction in sensor arrays is usually a highly nonlinear and non-Gaussian problem, and nonlinear filtering is an effective way to realize state estimation from available observations. Developing the processing problem of blind signal in wireless sensor networks (WSNs) will greatly extend the application scope. Meanwhile, it also meets great challenges such as energy and bandwidth constrained. For solving the constrained problem in WSNs, the observed signals must be quantified before sending to the fusion center, which makes the overall noise unable to be modeled accurately by simple probabilistic model. To study the reconstruction issue of chaotic signal with unknown statistics in WSNs, a reconstructed method of chaotic signal based on a cost reference particle filter (CRPF) is proposed in this paper. The cost recerence cubature particle filter (CRCPF) algorithm adopts cubature-point transformation to enhance the accuracy of prediction particles, and cost-risk functions are defined to complete particle propagation. The effectiveness of proposed CRCPF algorithm is verified in the sensor network with a fusion center. Moreover, a generalized likelihood ratio functionis obtained by the cost increment of local reconstructed signals in the cluster-based sensor network topology model, which is used to reduce the network energy consumption by selecting working nodes. Simulation results show that compared with CPF and CRPF, the proposed algorithm CRCPF attains good performance in a WSN with unknown noise statistics. Meanwhile, the CRCPF algorithm realizes the compromise between energy consumption and reconstruction accuracy simultaneously, which indicates that the proposed CRCPF algorithm has the potential to extend other application scope.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3