Extracting the driving force signal from hierarchy system based on slow feature analysis

Author:

Pan Xin-Nong ,Wang Ge-Li ,Yang Pei-Cai , ,

Abstract

Extracting the signals from non-stationary time series is a difficult task in many fields such as physics, economics, and atmospheric sciences. The theory of hierarchy suggests that varying driving force leads to the non-stationary behavior, so extracting and analyzing the slowly varying features can help to study non-stationary dynamical system, which has become a compelling question recently. Slow feature analysis (SFA) is an effective technique for extracting slowly varying driving forces from quickly varying non-stationary time series. The basic idea of SFA is to nonlinearly extend the reconstructive signal into a combination form with one or higher order polynomials, and to apply the principal component analysis to this extended signal and its time derivatives. The algorithm is guaranteed to seek an optimal solution from a group of functions directly and can extract a lot of uncorrelated features that are ordered by slowness. A series of studies has shown its superiority in extracting the driving force of non-stationary time series. The extracted signal is found to be highly correlated with the real driving force. Results based on ideal models show that either the slow driving force itself or a slower subcomponent can be detected by SFA. Yet despite all that, the further investigating of SFA is still needed to reduce its uncertainty. In this study, we create two types of non-stationary models by the logistic map with time-varying parameters: one includes two varying driving forces with different time periods constraining the evolution of time series in a non-stationary way; and the other is a three-layer structure encompassing two superimposed signals in which the slower signal of driving force is modulated by the lowest one. According to the ideal model and SFA, we conduct the numerical experiments to develop corresponding analysis method and discuss its application prospect in extracting driving force signals. We find that for the system of first kind, either the slowest signal or the combination of two driving forces constructed by SFA contains some uncertain information. However, we can detect the two independent driving forces from the constructed signal by wavelet analysis. For the three-hierarchy system that includes two superimposed signals of driving force, successive applications through SFA on the original time series and the constructed SFA signal will in turn detect the slower varying driving force signal and the slowest varying driving forces signal. The successful application of SFA shows its promising prospect in analyzing the external driving forces in non-stationary system and understanding relevant dynamic mechanism.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3