Extraction and analysis of hierarchy in complex system

Author:

Fan Kai-Yu,Liu Yan-Hua,Yang Pei-Cai,Wu Ji-Zhe,Wang Ge-Li, , , ,

Abstract

The non-stationary characteristics of the climate system have been widely recognized. The occurrence of this non-stationary phenomenon is caused by the hierarchical structure of the climate system. As a high-level system, the external driving forcing changes with time, which leads to the non-stationary phenomenon of atmospheric movement. Slow feature analysis (SFA) method can extract the slow-changing features from fast-changing non-stationary signal. The SFA has been applied to attribution analysis of the climate system. In this paper, we use the SFA method to extract the driving force signal from the non-stationary time series obtained by the Henon mapping model to test its extraction capability. Then we extract the external driving force signal from Beijing monthly average temperature time series, and analyze the scale characteristics and physical mechanism of external driving forcing signals combined with wavelet transform. The results show that the long-period external driving forcing signal and the short-period external driving forcing signal jointly work on the climate system. At the same time, the long-period external driving forcing signal also works on short-period external driving forcing signal. This work contributes to understanding the hierarchical characteristics of the climate system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3