Simulation of liquid channel of Fe-C alloy directional solidification by phase-field method

Author:

Kang Yong-Sheng ,Zhao Yu-Hong ,Hou Hua ,Jin Yu-Chun ,Chen Li-Wen ,

Abstract

In directional solidification, two characteristic parameters determine the dendritic growth: the thermal gradient and the pulling velocity. To achieve the suitable microstructure and improve the performance of casting, they are usually used to resize the pulling velocity or temperature gradient in directional solidification process. The structures obtained under different directional solidification conditions, and their associated properties both have been hot research points. It is difficult to observe the microstructure, which is usually on a micrometer scale, directly in experiment, and the phase-field method becomes a strong tool to understand the dendrite growth pattern. We mainly study the liquid channel formed after Fe-C alloy dendrite tip splitting under the specific condition of directional solidification and analyze the influence on liquid channel of pulling velocity in this paper. We choose the fixed thermal gradient G =20 K/mm which is on the order of the experimental value, and pulling velocity VP no more than 10 mm/s to keep the cooling rate in the range of low speed in dendrite growth, so that the interface kinetic effect can be neglected. Recent experimental results show the different interfacial energies in various compositions of Al-Zn alloy and Fe-C alloy, then we can investigate a series of directional solidification microstructures with fixed alloy Fe-0.5 wt.%C composition at different interfacial energies in our simulations. We find that the liquid channel is formed as a result of anisotropy competition between system and materials, the length and C concentration of liquid channel increase with the pulling velocity increasing, while the diameter of liquid channel is constant. It is interesting to find that there is a minimum of pulling velocity almost equal to 1 mm/s, the tip will not split and no liquid channel forms in the following steps either when the velocity is smaller than the minimum. We also compare the segregation caused by solute enrichment in liquid channel and solute segregation between dendrite arms in a series of simulations: the former is more serious than the latter. Then we point out the way to reduce the segregation caused by liquid phase channel by reducing the pulling velocity properly. It will be more practical to couple the flow field with other external field, such as magnetic field, in the simulation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3