Investigation of Freckle Formation under Various Solidification Conditions

Author:

Ma De Xin1,Zhou Bin2,Bührig-Polaczek Andreas1

Affiliation:

1. RWTH Aachen University

2. Katholieke Universiteit Leuven

Abstract

In the present work the influence of process parameters on freckle formation in superalloy CMSX-4 is demonstrated. A series of experiments were carried out using a laboratory furnace of Bridgman-type in which the temperature gradient G and solidification velocity V can be precisely controlled and individually varied over a wide range. On the etched surface and longitudinal sections of the quenched samples the formation and evolution of freckles were investigated. The initiation position of the freckles within the mushy zone was then determined. Based on the experimental observations a complete diagram was plotted to indicate the probability of freckle occurrence which is related to solidification parameters G and V. In this freckling map the freckle region is delimited by different criteria. Freckles arise only within a certain G/V-range for columnar dendrite growth; otherwise the solidification structure changes into cellular or equiaxed structure, depending on whether G/V-value increases or decreases. In comparison with the well-known freckling map of Copley et al., some new freckle-free regions are proposed. It is interesting to note that the freckle formation is also suppressed at very low cooling rates. In addition, the initiation position of the freckle formation in the mushy region was determined to be less than 2 mm below the dendrite tip of the solidification front.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3