First-principles study on thermodynamic properties of CdxZn1-xO alloys

Author:

Luo Ming-Hai ,Li Ming-Kai ,Zhu Jia-Kun ,Huang Zhong-Bing ,Yang Hui ,He Yun-Bin , ,

Abstract

Bandgap engineering is one of the keys to practical applications of ZnO. Using ternary ZnMeO (Me=Be, Mg, Cd, etc.) alloys to regulate the bandgap of ZnO has been widely studied. Alloying ZnO with CdO to form CdxZn1-xO is an effective way to narrow down the bandgap of ZnO. With its narrower bandgap, CdxZn1-xO is a promising candidate for fabricating optoelectronic devices operable in the UV-visible wavelength region. In this work, we study the thermodynamic properties of CdxZn1-xO alloys of both wurtzite (WZ) and rock salt (RS) structures by first-principles calculations based on density functional theory (DFT) combined with the cluster expansion approach. The effective cluster interactions (ECIs) fitted formation energies agree well with the DFT-calculated formation energies for different compositions and structures correspondingly, validating the cluster expansion approach in calculations of the formation energy for CdxZn1-xO alloys. It is found that, for both WZ-CdxZn1-xO and RS-CdxZn1-xO alloys, the ECIs involve pair, triplet and quadruplet interactions: the pair interactions are dominant and contribute mostly to the formation energy. The first-and second-neighbor pair interaction parameters of WZ-CdxZn1-xO are positive, which indicates a tendency of ordering in WZ-CdxZn1-xO. For RS-CdxZn1-xO alloys, the nearest-neighbor pair interaction is negative, indicating a tendency to phase separation. The dominant positive second-neighbor pair interaction, however, appears to favor the ordering tendency. For both the WZ-CdxZn1-xO and RS-CdxZn1-xO alloys, the calculated formation energy of most structures is positive in the whole composition range, except for WZ-CdxZn1-xO with Cd concentrations of 1/3 and 2/3. Then, the crystal and electronic band structures of the metastable WZ-Cd1/3Zn2/3O and WZ-Cd2/3Zn1/3O are calculated. It turns out that both lattice constants a and c increase while the value of c/a and the bond angle of OZn(Cd)O decrease with increasing Cd concentration in the WZ-CdxZn1-xO alloys. Analyses of the band structures, densities of states (DOSs) and partial densities of states of WZ-CdxZn1-xO alloys reveal that the valence band maximum (VBM) is determined by O-2 p states and the conduction band minimum (CBM) stems from the hybrid Cd-5 s and Zn-4 s orbital. The VBM rises while the CBM declines, leading to the decrease of the bandgap of WZ-CdxZn1-xO with increasing Cd concentration. At finite temperatures, the thermal stability of the solid-state system is determined by Gibbs free energy. The bimodal curve, which indicates the equilibrium solubility limits as a function of temperature, can be calculated by the common tangent approach from the Gibbs free energy. The critical temperatures, above which complete miscibility is possible for some concentrations, are 1000 and 2250 K for WZ and RS phases, respectively. The higher critical temperature implies that it is more difficult to form RS-CdxZn1-xO than to form WZ-CdxZn1-xO. Finally, the phase diagrams of WZ-CdxZn1-xO and RS-CdxZn1-xO are derived based on calculations of the Gibbs free energy. At 1600 K, the solubility of Cd in WZ-ZnO amounts to 0.13, while the solubility of Zn in RS-CdO limits to only 0.01, indicating that it is much easier to incorporate Cd into WZ-ZnO than to incorporate Zn into RS-CdO.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3