Day-to-Day dynamical evolution of network traffic flow under bounded rational view

Author:

Li Tao ,Guan Hong-Zhi ,Liang Ke-Ke ,

Abstract

The formation mechanism of network traffic flow and its evolution law are closely related to daily activities of travelers. The current studies indicate that the law of network traffic flow evolution is day-to-day; therefore, using days as the scale unit is an important way to illustrate the evolution of network traffic flow. In previous studies, travelers in the network were tacitly assumed to be entirely rational. When the rationality of travelers is limited, the dynamics of the evolution law needs to be re-examined. This paper presents the utility maximization hypothesis in a logit model by using the bounded rationality hypothesis and develops a bounded rational binary logit (BRBL) model. We apply the BRBL model to a day-to-day network traffic flow distribution and discuss the evolution law of day-to-day network traffic flow under the assumption of the limited rationality of travelers. Through a numerical experiment, this paper analyzes the evolution characteristics of network traffic flow. The results are as follows. Firstly, the final state of the network traffic flow process is not only correlated to the cost-sensitivity of travelers and dependence on actual cost, but also strongly related to the degree of the nationality of travelers. Secondly, the system will be either bifurcated or chaotic when either cost-sensitivity increases or dependence on actual cost increases. Moreover, within the group of travelers whose rationality level is low, no matter what the cost-sensitivity of travelers and the dependence on actual cost are, the evolution results are asymptotically stable. Finally, in particular, in certain circumstances, it is easy to achieve stability when the rationallty degree of travelers is very high or very low, while it is not easy to achieve stability when the rationality degree of travelers is medium.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3