Drivers’ Learning and Network Behavior: Dynamic Analysis of the Driver-Network System as a Complex System

Author:

Nakayama Shoichiro1,Kitamura Ryuichi1,Fujii Satoshi1

Affiliation:

1. Department of Civil Engineering Systems, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

A model system of drivers’ cognition, learning, and route choice is formulated, taking into account the limitations in drivers’ cognitive capabilities, and is applied to examine the dynamic nature of a driver-network system through microsimulation. Network equilibrium is not assumed a priori; rather, finding how an equilibrium is reached, or not reached, is the objective. Although equilibrium analysis, in general, focuses on unique and static equilibrium by treating drivers’ behavior as simply as possible, drivers’ behavior is treated more realistically to enhance understanding of the day-to-day dynamics of the driver-network system. Results of microsimulation analyses indicate that the network flow does not necessarily converge to user equilibrium; instead, it may reach “deluded equilibrium,” which is caused by drivers’ false perceptions of travel times, and have “path dependence.” Results, especially the complex behavior such as path dependence shown in the simulation, indicate that the driver-network system is a complex system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3