Numerical simulation of inductively coupled Ar/O<sub>2</sub> plasma

Author:

Zhang Yu-Han,Zhao Xin-Qian,Liang Ying-Shuang,Guo Yuan-Yuan, ,

Abstract

In the inductively coupled plasma (ICP) discharge, surface processes, such as reflection, de-excitation, and recombination, can occur when active species arrive at material surfaces, which accordingly influences the plasma properties. In this work, a fluid model is used to study the Ar/O<sub>2</sub> plasma generated by ICP reactors made of different materials. In simulation, sticking coefficient is employed to estimate the surface reactions on different materials. As the reactor material changes from stainless steel to anodized aluminum to Cu, the sticking coefficient of surface reaction O→1/2O<sub>2</sub> decreases accordingly. It is found that the reactor material has a great effect on species density. In the stainless steel reactor, the density of O atoms at grounded state and excited state are much lower because more O<sub>2</sub> molecules are generated from the surface reaction, yielding a much higher density of <inline-formula><tex-math id="M5">\begin{document}$ {\text{O}}_2^ + $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M5.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M5.png"/></alternatives></inline-formula> molecular ions which are mainly created from the ionization process of O<sub>2</sub> molecules. Similarly, the high density of O<sub>2</sub> molecules also enhances the production of <inline-formula><tex-math id="M6">\begin{document}${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M6.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M6.png"/></alternatives></inline-formula> molecules through the excitation process and O<sup>–</sup> ions through the dissociation attachment reaction. On the contrary, more electrons are consumed via the collisions between electrons and O<sub>2</sub> molecules or <inline-formula><tex-math id="M7">\begin{document}$ {\text{O}}_2^ + $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M7.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M7.png"/></alternatives></inline-formula> molecular ions. Therefore, the electron density obtained in the Cu reactor is highest. The density of Ar<sup>+</sup> ions and Ar<sub>m</sub> atoms also increase with sticking coefficient decreasing. The density of O<sup>+</sup> ions and <inline-formula><tex-math id="M8">\begin{document}$ {\text{O}}_2^ + $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M8.png"/></alternatives></inline-formula> molecular ions peak below the coil in the stainless steel reactor, whereas the radial uniformities are improved in the Cu reactor. In the three reactors, the electrons distribute evenly at the reactor center region. The O density and <inline-formula><tex-math id="M9">\begin{document}${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M9.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240436_M9.png"/></alternatives></inline-formula> density significantly peak at the reactor center, while the maximum value of Ar<sup>+</sup> density and Ar<sub>m</sub> density are below the coil. As for O(<sup>1</sup>D), the maximum density below the coil region moves toward the reactor center as the reactor material changes from stainless steel to Cu. Finally, the effect of sticking coefficient of O→1/2O<sub>2</sub> is studied. The results show that the O atom density decreases with the sticking coefficient increasing, but the opposite trend is observed in O<sub>2</sub> molecular density. It is noticed that the sticking coefficient has little effect on species density when it is higher than 0.5.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3