Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications

Author:

Liu Yong-Xin,Zhang Quan-Zhi,Zhao Kai,Zhang Yu-Ru,Gao Fei,Song Yuan-Hong,Wang You-Nian

Abstract

Two classic radio-frequency (RF) plasmas, i.e., the capacitively and the inductively coupled plasmas (CCP and ICP), are widely employed in material processing, e.g., etching and thin film deposition, etc. Since RF plasmas are usually operated in particular circumstances, e.g., low pressures (mTorr–Torr), high-frequency electric field (13.56 MHz–200 MHz), reactive feedstock gases, diverse reactor configurations, etc., a variety of physical phenomena, e.g., electron resonance heating, discharge mode transitions, striated structures, standing wave effects, etc., arise. These physical effects could significantly influence plasma-based material processing. Therefore, understanding the fundamental processes of RF plasma is not only of fundamental interest, but also of practical significance for the improvement of the performance of the plasma sources. In this article, we review the major progresses that have been achieved in the fundamental study on the RF plasmas, and the topics include 1) electron heating mechanism, 2) plasma operation mode, 3) pulse modulated plasma, and 4) electromagnetic effects. These topics cover the typical issues in RF plasma field, ranging from fundamental to application.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3