Preliminary Exploration of Low Frequency Low-Pressure Capacitively Coupled Ar-O2 Plasma

Author:

Wali Niaz1ORCID,Xiao Weiwen2,Din Qayam Ud3,Rehman Najeeb Ur3ORCID,Wang Chiyu4,Ma Jiatong1,Zhong Wenjie1,Yang Qiwei56ORCID

Affiliation:

1. Institute for Fusion Theory and Simulation, School of Physics, Zhejiang University, Hangzhou 310058, China

2. School of Physics, Zhejiang University of Technology, Hangzhou 310014, China

3. Plasma Research Laboratory, Department of Physics, COMSATS University, Islamabad 45550, Pakistan

4. Southwestern Institute of Physics, Chengdu 610041, China

5. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

6. Institute of Zhejiang University-Quzhou, Quzhou 324000, China

Abstract

Non-thermal plasma as an emergent technology has received considerable attention for its wide range of applications in agriculture, material synthesis, and the biomedical field due to its low cost and portability. It has promising antimicrobial properties, making it a powerful tool for bacterial decontamination. However, traditional techniques for producing non-thermal plasma frequently rely on radiofrequency (RF) devices, despite their effectiveness, are intricate and expensive. This study focuses on generating Ar-O2 capacitively coupled plasma under vacuum conditions, utilizing a low-frequency alternating current (AC) power supply, to evaluate the system’s antimicrobial efficacy. A single Langmuir probe diagnostic was used to assess the key plasma parameters such as electron density (ne), electron temperature (Te), and electron energy distribution function (EEDF). Experimental results showed that ne increases (7 × 1015 m−3 to 1.5 × 1016 m−3) with a rise in pressure and AC power. Similarly, the EEDF modified into a bi-Maxwellian distribution with an increase in AC power, showing a higher population of low-energy electrons at higher power. Finally, the generated plasma was tested for antimicrobial treatment of Xanthomonas campestris pv. Vesicatoria. It is noted that the plasma generated by the AC power supply, at a pressure of 0.5 mbar and power of 400 W for 180 s, has 75% killing efficiency. This promising result highlights the capability of the suggested approach, which may be a budget-friendly and effective technique for eliminating microbes with promising applications in agriculture, biomedicine, and food processing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3