Photovoltaic properties of two-dimensional van der Waals heterostructure Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe (<i>X</i> = Bi, Sb)

Author:

Xiong Xiang-Jie,Zhong Fang,Zhang Zi-Wen,Chen Fang,Luo Jing-Lan,Zhao Yu-Qing,Zhu Hui-Ping,Jiang Shao-Long, , , ,

Abstract

Two-dimensional semiconductor heterostructures have excellent physical properties such as high light absorption coefficients, large diffusion lengths, high carrier mobility rates, and tunable energy band structures, which have great potential in the field of optoelectronic devices. Therefore, designing two-dimensional (2D) semiconductor van der Waals heterostructures is an effective strategy for realizing multifunctional microelectronic devices. In this work, the 2D van der Waals heterostructure Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe of non-lead Perovskite Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub> and indium-tin InSe is constructed to avoid the toxicity and stability problems of lead-based Perovskites. The geometry, electronic structure, and optical properties are calculated based on the first-principles approach of density-functional theory. It is shown that the 2D Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>/InSe and Cs<sub>3</sub>Sb<sub>2</sub>I<sub>9</sub>/InSe heterostructures are of type-II energy band arrangement and have band gaps of 1.61 eV and 1.19 eV, respectively, with high absorption coefficients in the visible range and UV range reaching to 5×10<sup>5</sup> cm<sup>–1</sup>. The calculation results from the deformation potential theory and the hydrogen-like atom model show that the 2D Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe heterostructure has a high exciton binding energy (~0.7 eV) and electron mobility rate (~700 cm<sup>2</sup>/(V·s)). The higher light absorption coefficient, carrier mobility, and exciton energy make the 2D Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe heterostructures suitable for photoluminescent devices. However, the energy band structure based on the Shockley-Queisser limit and type-II arrangement shows that the intrinsic photoelectric conversion efficiency (PCE) of the 2D Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe heterostructure is only about 1.4%, which is not suitable for photovoltaic solar energy. In addition, the modulation and its effect of biaxial strain on the photovoltaic properties of 2D Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe heterostructures are further investigated. The results show that biaxial strain can improve the visible absorption coefficient of 2D Cs<sub>3</sub><i>X</i><sub>2</sub>I<sub>9</sub>/InSe heterostructure, but cannot effectively improve its energy band structure, and the PCE only increases to 3.3% at –5% biaxial strain. The above study provides a theoretical basis for designing efficient 2D van der Waals optoelectronic devices in future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3