Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection

Author:

Wu Xiao-Dong,Huang Duan, ,

Abstract

Plug-and-play discrete modulation continuous variable quantum key distribution can generate local oscillator light locally without using two independent lasers, and both signal light and local oscillator are generated from the same laser, which can effectively ensure the practical security of the system and have a completely identical frequency characteristic. In addition, this scheme has good compatibility with efficient error correction codes, and can achieve high reconciliation efficiency even at low signal-to-noise ratio. However, there exists large excess noise in the plug-and-play configuration based on the untrusted source model, which seriously limits the maximum transmission distance of the discrete modulation scheme. To solve this problem, we propose a plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. That is to say, a non-Gaussian state-discrimination detector is deployed at the receiver. With adaptive measurement method and Bayesian inference, four non-orthogonal coherent states which are based on four-state discrete modulation can be unconditionally distinguished on condition that the error probability is lower than the standard quantum limit. We analyze the security of the proposed protocol by considering both asymptotic limit and finite-size effect. Simulation results show that the secret key rate and maximum transmission distance are significantly enhanced by using no-Gaussian state-discrimination detection even under the influence of the untrusted source noise compared with the original plug-and-play discrete modulation continuous variable quantum key distribution. These results indicate that the proposed scheme can effectively reduce the negative influence of the untrust source noise on the performance of the plug-and-play discrete modulation continuous variable quantum key distribution protocol. The proposed protocol can not only ensure the practical security of the system, but also achieve more efficient and longer transmission distance quantum key distribution.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3