Luminescence principle and characteristics of imaging plate

Author:

Wang Hao-Ran,Tian Bao-Xian,Bo Nan,Liu Fu-Long,He Chuang-Ye,Jia Shao-Qing,Guo Bing,Wang Nai-Yan, , , ,

Abstract

The imaging plate (IP) is a reusable detector for detecting radiation particles in a complex electromagnetic field environment, and it is widely used as a detection medium in laser-accelerated particle beam diagnostic equipment. Therefore, it is necessary to study the performance characteristics and physical mechanism of IP. An electron source with known activity is used to explore the performance characteristics of IP. A <sup>90</sup>Sr/<sup>90</sup>Y electron source is used to measure the time attenuation curve, calibrate the absolute sensitivity, and study the law of multiple scanning of BAS-SR and BAS-TR. In the case of a longer irradiation, the fading cannot be neglected, and the attenuation curves are modified. The time attenuation characteristics indicate that the IP should be cooled after irradiation, and the scanning should be carried out in the slow decay process to reduce the influence of the reading error in the decay process. The absolute sensitivity of BAS-SR and BAS-TR to <sup>90</sup>Sr/<sup>90</sup>Y source are (0.033±0.002) PSL/<i>e</i> and (0.018±0.0038) PSL/<i>e</i> (photostimulated light, PSL), respectively, which are consistent with the results of most absolute sensitivity. The absolute sensitivity is closely related to the type of IP, scanning equipment, and experimental environment. In addition, the energy spectrum integral effect of the broad spectrum <i>β</i> source has a significant influence on the absolute sensitivity. This method is only suitable for the rough evaluation of the sensitivity characteristic parameters of the IP. Multiple scanning approximately satisfies the double exponential function distribution, which is consistent with the physical model. The characteristics of IP are determined by its storage principle. The fluorescence layer of IP is composed of typical electron trapping materials <i>M</i>F<i>X</i> (<i>M</i> = Ca, Sr, Ba; <i>X</i> = C1, Br, I) alkaline earth metal fluorhalide BaFBr. When the IP is irradiated, a large number of free electron-hole pairs are excited by the deposited energy in the material, and the free electrons will be captured by the electron trap, so the fluorescence layer of the IP records the radiation particles’ information through the energy deposited. In this paper, we study three kinds of models. Based on the models, a photo-stimulated luminescence model is proposed to describe the electron transfer process. The photo-stimulated luminescence model describes the physical mechanism of energy deposition, information storage, and information scanning of radiation particles. The relationship between the physical mechanism and characteristics is explained effectively by combining the microscopic mathematical model with the macroscopic physical phenomenon. It provides a specific data basis for the subsequent application of IPs in laser plasma diagnostic experiments.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Danson C N, Haefner C, Bromage J 2019 High Power Laser Sci. 7 54

2. Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229

3. Huang J W, Li D H, Dang Y L, Wu D, Wang N Y, Hao Y M 2017 Nucl. Electron. Detect. Technol. 37 559
黄建微, 李德红, 党永乐, 吴笛, 王乃彦, 郝艳梅 2017 核电子学与探测技术 37 559

4. Zeil K, Kraft S D, Jochmann A, Kroll F, Jahr W, Schramm U, Karsch L, Pawelke J, Hidding B, Pretzler G 2010 Rev. Sci. Instrum. 81 013307

5. Gales S G, Bentley C D 2004 Rev. Sci. Instrum. 75 4001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3