Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface

Author:

Wang Jing-Li,Dong Xian-Chao,Yin Liang,Yang Zhi-Xiong,Wan Hong-Dan,Chen He-Ming,Zhong Kai, , ,

Abstract

Terahertz (THz) wave has the advantages of low photon energy, high resolution, large communication bandwidth, etc. It has broad application prospects in security detection, high-resolution imaging, high-speed communication, and other fields. In recent years, as a new way to control THz wave, THz metasurface functional devices have attracted extensive attention of researchers. In this work, vanadium dioxide (VO<sub>2</sub>), a phase change material, is introduced into the coding metasurface. By regulating a circularly polarized wave and the orthogonal linearly polarized waves independently, a multi-function coding metasurface that can work at dual frequency points is obtained. It is composed of three layers. The top layer is a metal-VO<sub>2</sub> composite structure. The middle is a polyimide dielectric layer. The bottom is a metal ground. Under certain conditions, the double split ring resonator (DSRR) and the cross structure in the top layer are relatively independent. Designing the coding sequences for them enable the coding metasurface to have multiple functions. The electromagnetic simulation software CST is used to establish model and conduct simulation, and the obtained results are as follows. When the VO<sub>2</sub> is in an insulating state and a circularly polarized wave at 0.34 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the DSRR. The DSRR is rotated to meet the requirements of 3-bit Pancharatnam-Berry phase coding. The coding sequence is designed to generate vortex beams with the topological charge <i>l</i> = ±1 at a specific angle. The VO<sub>2</sub> state is changed into a metallic state, and the DSRR can be equivalent to a metal ring. When the orthogonal linearly polarized wave at 0.74 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the cross structure. Because of its anisotropy, four different 2-bit coding metasurface elements can be obtained respectively by changing the length of the horizontal arm and the vertical arm. The design of appropriate coding sequences can reduce the radar cross section of the <i>x</i>-polarized wave and the beam splitting of the <i>y</i>-polarized wave, and the results have broadband characteristics. Multiple coding sequences can be designed by special characteristics of the coding metasurface, then various expected functions can be realized on the same metasurface. It solves the problem of single function of ordinary metasurface devices to a certain extent, and paves a novel way to the development of THz multi-function systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3