Author:
Wang Jing-Li,Dong Xian-Chao,Yin Liang,Yang Zhi-Xiong,Wan Hong-Dan,Chen He-Ming,Zhong Kai, , ,
Abstract
Terahertz (THz) wave has the advantages of low photon energy, high resolution, large communication bandwidth, etc. It has broad application prospects in security detection, high-resolution imaging, high-speed communication, and other fields. In recent years, as a new way to control THz wave, THz metasurface functional devices have attracted extensive attention of researchers. In this work, vanadium dioxide (VO<sub>2</sub>), a phase change material, is introduced into the coding metasurface. By regulating a circularly polarized wave and the orthogonal linearly polarized waves independently, a multi-function coding metasurface that can work at dual frequency points is obtained. It is composed of three layers. The top layer is a metal-VO<sub>2</sub> composite structure. The middle is a polyimide dielectric layer. The bottom is a metal ground. Under certain conditions, the double split ring resonator (DSRR) and the cross structure in the top layer are relatively independent. Designing the coding sequences for them enable the coding metasurface to have multiple functions. The electromagnetic simulation software CST is used to establish model and conduct simulation, and the obtained results are as follows. When the VO<sub>2</sub> is in an insulating state and a circularly polarized wave at 0.34 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the DSRR. The DSRR is rotated to meet the requirements of 3-bit Pancharatnam-Berry phase coding. The coding sequence is designed to generate vortex beams with the topological charge <i>l</i> = ±1 at a specific angle. The VO<sub>2</sub> state is changed into a metallic state, and the DSRR can be equivalent to a metal ring. When the orthogonal linearly polarized wave at 0.74 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the cross structure. Because of its anisotropy, four different 2-bit coding metasurface elements can be obtained respectively by changing the length of the horizontal arm and the vertical arm. The design of appropriate coding sequences can reduce the radar cross section of the <i>x</i>-polarized wave and the beam splitting of the <i>y</i>-polarized wave, and the results have broadband characteristics. Multiple coding sequences can be designed by special characteristics of the coding metasurface, then various expected functions can be realized on the same metasurface. It solves the problem of single function of ordinary metasurface devices to a certain extent, and paves a novel way to the development of THz multi-function systems.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献